

Spatio-Temporal Attention for Manipulation Failure Detection

Ipek Erdoğan, Assoc. Prof. Dr. Sanem Sarıel

Istanbul Technical University, Computer Engineering Department

Abstract

When technological developments are taken into consideration, it is seen that scientists spend a lot of work in the field of robotics. It is one of these sub-topics to produce robots to accompany people in their daily lives and assist them in their work. However, the studies on humanoid robots that can perform human beings' actions in everyday life bring with them the possibility of making mistakes. These errors can negatively affect the lives of creatures in the environment that robot interacts. Therefore, it is necessary to give the robot a sense of understanding when it makes a mistake and even predicts how to avoid it. This project aims to detect the error when the robot makes a mistake by using deep learning models.

Dataset	Approaches	Experiment Details
The two datasets of this project consist of videos which have been taken by Baxter's cameras. These datasets are: Head Camera Dataset and Arm Camera Dataset. Both of the datasets have 5 subsets: Push, Place, Pour,	Data Processing ➤ Normalization	

Tower and Container.

Different Sampling Types

- Random
- Final
- Equal distance
- From beginnng and end
- From middle
- > Splitting the Dataset

Approaches to Reduce Overfitting

- ➢ Regularization
- Batch Normalization

Attention

LSTM

Temporal Attention

FC

Spatial Attention

ANBUL

1773

T

Figure 1.1: A "fail" situation during a push operation

- \succ L1 Regularization (Lambda = 0.001)
- Adam Optimizer
- > 8 Frames
- Learning Rate: 0.0001
- Epochs: 50
- Iterations: 5

Models	Results						
• VGG16 + LSTM	Test Accuracies	All Dataset	Container	Place	Tower	Pour	Push
CNN CNN CNN CNN CNN CNN CNN CNN CNN	VGG16 + LSTM	0.80±0.01	0.59±0.02	0.74±0.03	0.97±0.04	0.85±0.01	0.69±0.01
• VGG16 + Spatial Attention +LSTM	VGG16 + Spatial Attention + LSTM	0.62±0.03	0.58±0.02	0.64±0.06	0.70±0.06	0.73±0.08	0.65±0.10
3x3 Conv,64 3x3 Conv,64 3x3 Conv,64 3x3 Conv,128 3x3 Conv,128 3x3 Conv,128 3x3 Conv,512 3x3 Conv,512 3x3 Conv,512 3x3 Conv,512 3x3 Conv,512 3x3 Conv,512 3x3 Conv,512 5 5 7 7 7 7 7 7 7 7	VGG16 + LSTM + Temporal Attention (1)	0.78±0.02	0.61±0.03	0.62±0.07	0.93±0.05	0.84±0.02	0.63±0.04
$\begin{array}{c c} L_1 & L_2 & L_3 \\ \hline \\ $	VGG16 + LSTM +	0.79±0.01	0.59±0.02	0.75±0.06	0.91±0.05	0.86±0.02	0.69±0.03

Temporal Attention (2)

Estimator-1 Estimator-2 Estimator-3

VGG16 + LSTM + Temporal Attention ullet

VGG16 + LSTM + Spatial Attention + Temporal ulletAttention

VGG16 + LSTM + **Spatial & Temporal** 0.64±0.03 0.57±0.06 0.73±0.09 0.66±0.09 0.74±0.08 0.59±0.05 Attention

Conclusion

In this project, our aim was to increase our model's accuracy with help of both spatial and temporal attention mechanisms; but results are not enough consistent. One of the biggest reason of this result was our dataset. As it was not big enough, we couldn't train our models with our own datasets end-to-end, we had to use pre-trained models. Also, dataset's heterogeneity restricted us to reach a convergent result.

Future Work	QR Code				
Creating a new dataset					
Multimodal sensor fusion					
Use ConvLSTM instead of LSTM					